SOLUTION OF A PLANE STEADY-STATE PROBLEM IN
THE THEORY OF HEAT CONDUCTION FOR A BOUNDARY
CONDITION OF THE THIRD KIND FOR REGIONS BOUNDED
BY CYCLOIDAL CURVES
B. A. Vasil'ev UDC 536.2
We demonstrate that the steady-state problem of the theory of heat conduction for regions
bounded by cycloidal curves -- releasing heat from the surface according to Newton's law
— can be reduced through application of conformal mapping to the solution of equations in

finite differences, solvable in terms of Bessel functions with one variable,

Plane steady-state problems in the theory of heat conduction are reduced to the solution of the Laplace
equation [1]

r

u . Pu ,
for the boundary condition
{
— + hu| =Ff(p) (2)
I

where h is a positive constant and f(p) is a specified function.

In the general case the boundary conditions (2) do not allow for effective application of the method of
conformal mapping with respect to solution of the problem. However, as demonstrated in [3], we can iso-
late a special class of domains for which the method of conformal mapping onto a circle makes it possible
to reduce the problem to the solution of finite-difference equations solvable in Bessel functions with many
variables [4]. The domains treated in [3] represent a special case of the broader class of domain produced
in the mapping of a unit circle with the aid of the function

£
W@E =4 [P @] d @)
Q
where ¢ = expif; W =x + iy; A is an arbitrary constant; P (%) is a polynomial of degree m with real coef-
ficients, and P,,(0) = 0.

Of particular interest are the domains bounded by cycloidal curves [2], and these are produced through
conformal mappings of the form

&
W(g):A_§[§M+x12d§,m=1, 2,3 ..., @)
0
where £ = pexpif; |p| = 1;—7 = § = +m; A is a positive real diameter; A is an arbitrary constant. The
geometric curves (4), corresponding to the unit circle in the £ plane, have m lobes and are simple closed
curves when A = )\m and A, =2A3.%*  The arc length of these curves is a rational function of the param-
eter

*When A= A, (m = 1), the contour has one singularity which represents a point of osculation for two parts
of the contour.
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From (4) and (5) it is easy to derive the equation for the curves in parametric form:

S 2
- A {cosB + 2cos (m +1)0 | cos(2Zm+1)80 } ,
2n (1 423 Aim+1) A @2m+1)
(5a)
Si2 i i
y= {sin@—t— 2in{m + 1) 6 4 sin{2Zm+ 1) 8 } )
2a (1 + 1Y A(m + 1) AN(@2m+1)
where -1 <f¢=s+mm=1, 2, 3,..., N; Sis the arc length; A = )\gn is a parameter,
1. Formulation of the Problem for a Circle and
Reduction of this Problem to the Solution of
Finite-Difference Equations
With the conformal mapping 4)
I3 m+x am+1
W(§)=—————~S}“ {5 2 R ,m=1,2,3,...,N, (6)
2z (1 + 2% Am+ 1 ACm+ 1)
Eq. (1) aud boundary conditions (2) are brought to the form
d [ Ou u
AN et DT Y (7
e 3 (p dp ) + 00
in a circle with the boundary condition
du kS 22
— =1+ cosme)u = f, (9), (8)
% + o ( i Y - fy
where £,(g) is a specified function satisfying the Dirichlet conditions in the interval -7 < § < + .
Then
b | N\ A
@) = —23 + 2 (6, cosnB + ¢, sinng]. 9)

n==1

The unique feature of this case, enabling us to derive an exact solution for the problem, rests in the fact
that the coefficient

h(6)=k(‘iW— =ﬁs~(z+- e cosm&) (19)
dE | [p=t 2n \ 1+ A2
is atrigonometric binomial
h(8) =a,+acosmB, —n <O 4 m, (11)
where
BB A
BT T T Ty
We seek the solution for (7) and (8) in the form
A\ ~ (12)
L= - + Zp |4, cos nb + B, sinnBj.

a=i

Substituting (12) into boundary condition (8), for the determination of the expansion coefficient we derive a
system of difference equations

(n+ao)An+%1—[An+m+:4,,_m]=bm n=0 1,23 ... (13)

(n + a5) Bx +% Brwm +Boml =Ca 8 =1,2,3, ..., (14)
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under the condition
An—> 0, B,—0; (15)
Fl - co PR
A=A, n=1,23, .

PR ([

(16)
B,=—B, n=012 ..., m—L {(17)
Using the results of [3], it is not difficult to obtain a solution for (13) and (14) in the form

5 .\ 2%k —1 - 2k—1 a 1

A, = An+,§ [mhcos ——nn + @, sin p. nn] Tty (——) ) (18)
=\ 2%—1 = . %—1 a
B, =B, ©y, COS ~————— AT +- ©, Sin nn | J Rl I (19)
+ ;[ h m @y m ] n-r[r-ta,, ( m )

where m = 2s or m = 2s—-1, s=1, 2, 3, < Ny wk, wk; and “’k are arbitrary constants; J y ) is a
Bessel function of the first kind; A and B are particular solutions of (13) and (14), satlsfymg COndltIOtlS
{15).

The particular solutions A and B can be presented in terms of the Green's function [3] in finite-
difference equations

A = 2 bigim: B = Eclgln (20)
T1=0
When the number for bn and c, is finite, the solutions Zn and En can be found from the recurrence relation-
ships

Ay = 2 by (0 + ) Ay — Ay 21)
a

where n = p; p—1; p—2; . ; 0, under the condition

(22)

We have similar formulas for B,.

Having substituted (18) and (19) into (16) and (17), to determine the numbers Wes wk, wk, and @ “)k we
obtain a system of algebraic equations*

[E @, €OS 2k—1 'rr] -+ [JnJran + Jao_-n]
m

I: nta, an—]
m
Z o, sin 2k—1 n~J =A,—A4,

.. m,m—2sorm—23—1;s~—1, 2,3

wheren=1, 2, 3, .., N:

s - 8
= . 2k—1 ‘ ~ — 5 B
[Jao—-n - Jarl—n] [2 @ S fan - [Jn+ao =+ Jao-—n] [ ) ), €0s 2k 1 n”] =B, + B s . (24)

T “m A L m . TE “w Al m
wheren =0, 1, 2, 3, ., m—1;m=2s0orm=2s-1;8s=1, 2, 3

.. N.

2. Examples of the Solutions for Certain Problems

of Mathematical Physics

Example 1. Let us consider the special case of problems (7) and (8) for m = 2. Let £(8) =by/2 + by
-cos 0, and the solution of Eq. (13) will then be
Ay="p+ [0, cos ZX 4+ G, sin B Joia (E‘— . (25)
2 2 =\ 2

From the recurrence relationships (21) we obtain

Ag= A —Fy—mee0; A= 20 7,= 2. (26)
4 a;
*We can demonstrate that the determinants of systems (23) and (24) are not equal to zero
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The constants w, and 0—)1 are determined directly from (23)

by 2
(01:-;_'] — 3
. (27)
G=br 2
Ve et
2 2

Thus solution (12) can be written in the form

1 a - a PR a
=0 —J, 2]+ V=1 %) o cos 240 {S"—lkJ L) gt . @8
1{2 %(2)—%}#;( ) k+%(2)p cos + @ ~k_0( ) oot g p**1cos (2k + 1) 0} » (28)
where q; = hS /27; ay = hSA/7(1 + A, b, and by are certain specified numbers; Sis the arc length; h is the

heat-transfer coefficient.

Example 2. Let us find the steady-state temperature distribution within the domain bounded by curve
(5a), if uniform heat release is taking place within that region. The heat is radiated according to Newton's
law at the boundary. The temperature of the external medium is equal to zero. The problem reduces to
the integration of the equation

2 2
Fu O Qup 29)
ox? oy? K
for the boundary condition
9% 1 | =0, (30)
on T

where K is the coefficient of thermal conductivity and Q is the quantity of heat released per unit volume,

Let us isolate the particular solution

U=ty Uy, e AUy = — 7% in D wyl, = 0. (1)
Then, for u; we have
Au, = 0in D; o4 +. hu, I = — 9ty 32)
on }r on Ir
We will use conformal mapping (6) and isolate the particular solution (31) of the problem, i.e.,
Q 2 % Q 17,
U, = — ————— (X ::-—--‘—WW. (33)
3 1K >+ K
Then, for u, we obtain
2 4 2m+2 | dm+2 __ |
8 A ]
162K (1 +A%2 (L AR (m 1) A (2m 4 1)
4 (pm+2 — pm) 4 (p3m+2_..pm) " cos me _s_ w cos zme} . (34)
A(m4-1) MBm+1)2m-+ 1) M (2m + 1)
With the conformal mapping (6), the equation and boundary conditions (32) are brought to the form
) Ou, %u,
—— t =0 {35)
* o (" % ) e
in a circle for the boundary conditions
422 1 433 4% .
At 3
£+£S_(1_3_ 24 ol N mil " omi + m+1 +2m+1 cos m
3 T Tar osm)u|  =—gag ¥ T+
2
+ 2N cos 2me} . (36)
2m+ 1) (1 4 A%
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The solution for (35) and (36) will be sought in the form

_ 0" [A Ny m : (37)
Uy = 8K [2 -l—EAnp cos mnh

n=1

The coefficients A are determined from the equation
(n+ap) A, + —%—[A,,H—{—A,,_,]:bn, n=01,9 ..., (38)

for the conditions An,—+0 and A_; = Ay, where
P
hS hS A

= ;o= , m=1,23, ..., N;
% 2nm ! am 1A%
82 2 423 4
438 +
T +2m+1_ poo mAl  omil (39)
b = m (1 + AP R m (1 + A9 '
2
b, = 2h i by=b,=-.=0

m@m+ 1) (1+a22

the solution of (38) can be derived from the recurrence relationships (21) and (22), from which we have

— . _ 2 2
A =2 by A= »%—bi—(—) @+ )by
a, a a,
— 2b, 2 \2 213\2 2b
A= (2] wnt (2 st o By 40)
4 a, 4 4
A= A=A, =+ .- =0
Thus from (19), (23), and (40) we obtain
Q* (b, 1 (2 )2 _ 2y m
— e SN I (i P 1 b, + cos mb
Uy 8K {ai 2 (al (a4 1) b, ) p
w (41)
1 i
+o, [Q—J% @)+ 2, (— 1 T, (@) o™ cos mne]} :
where m =1, 2, 3, ..., N;
2 2 \3 4b
’2_%‘_”(“2‘) Gobs + (—) a @+ 1) ——2 (42)
o = X 4 e] Y ;
' 275, (@)

Jao (a;) is a Bessel function of the first kind. Solutions (41) and (42) are a generalization of the solution,
derived earlier in [3], for the case m = 1.
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